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Abstract

By treating the hi gh-momentuin gluon and the quark sector as an in

principle calculable effective Lagrangian we obtain a non-perturbati ve

vacuum state for OCD as an infrared quark-gluon condensate. This vacuum
is removed from the perturbative vacuum by an energy gap and supports a

Meissner- Ochsenfeld effect. It is unstable below a minimum size and it

also suggests the existence of a universal hadroni zation time. This
vacuum thus exhibits all the properties required for color confinement.





1, Introduction

By now it is widely believed that the confinement in QCD, in analogy with
superconductivity, results from the existence of a physical vacuum which is

removed from the remainder of the spectrum by an energy density gap and which
exhibits a Mei ssner-Ochsenfeld effect [1], More particularly, it is believed
that these characteristics of the physical vacuum result from the infrared
properties of QCD. With this in mind we have constructed in a recent paper

[2] a simple model for QCD which concentrates on the low-energy part and
parametrizes in a precisely defined manner the high-energy part of the theory,
and we have shown by means of a Bogoliubov transformation that this simple
model has a non-perturbati ve solution for the vacuum arising in the low-energy
part which indeed possesses the desired characteristics. In that paper the
fields were formulated in a t ransl ational ly non-invariant manner which is

needed to describe the bag-vacuum interface. In the present paper where we
concentrate on the vacuum state we use instead the transl ati onal ly invariant
Fourier expansion. This formulation is not only directly well suited for the
description of the vacuum state, but it also is easier to use to obtain
explicit solutions for the "wave function of the vacuum." For a full treat-
ment of the structure of the hadrons one, of course, will have to revert to
the formulation of reference 2. At any rate, in the present paper we will

demonstrate in detail how to construct the parameters of the theory which
arise from the high-energy part of QCD and evaluate some of them in lowest
order. Owing to the asymptotic freedom of QCD this is a perfectly legitimate
procedure, of course subject to the limitations in the accuracy of the results
inherent in any perturbation expansion. We also will derive explicit expres-
sions for the quasi-particle spectrum which were left unspecified in Ref. 2.

We should here re-emphasize that the theory does not contain any ingredients
extraneous to QCD. Therefore, in principle it can be enlarged in a straight-
forward manner to yield approximations approaching the actual solution of the
QCD vacuum problem.

The most extensive recent treatments of the confinment problem are based
on the evaluation of Wilson loops on a four-dimensional lattice [3,4] which,
of course, precludes translational or Lorentz covariance. This method avoids
the expl icit ..introduction of the structure of the vacuum. The properties of

the vacuum itself are discussed in several papers which show that it can have

the character of a superconductor, i.e., that a superconductive vacuum is

compatible with QCD [5]. A quite general discussion of the application of the

Bogoliubov transformation to QCD recently has been given by Brise et al [6]

and by Schcrtte [7].

There exists also a series of papers concerning the QCD vacuum utilizing

the concepts of the bag model [8]. Even though the obtained results may be

correct, it could be argued that an investigation of the color confinement in

terms of a model which includes color confinement as one of its basic assump-

tions involves a circular argument. It is precisely to avoid this possible
pitfall that we have been careful to use only pure QCD concepts in our

treatment.

The present paper is organized as follows. In section 2 we introduce the
method by which we isolate the infrared part of the theory. This method

defines a framework in which one can perform a perturbation expansion of the

high-energy part in full anology to the perturbation expansion of QED (see the



discussion preceding eq (A. 9) Appendix A); owing to the well-known asympotic
freedom of QCD one presumably can have at least as much confidence in the
results of this treatment as for the case of QED. The perturbati vely treated
high-energy part then yields the parameters which determine the dynamics of

the infrared part, to be treated non-perturbati vely . The degree of approxima-
tion with which one chooses to compute the high-energy part defines the
"model;" the inaccuracies of the "model" reside in the residual terms of the
expansion of the high-energy part, exactly as in QED for the solutions. By
continuing the expansion the accuracy of the "model" can be improved, again
exactly as in QED for the solutions. In other words, in this section we show
how our "model" is related to, and is derived from, the QCD Lagrangian. We

perform the analysis in the non-covariant Hamiltonian formalism in the
Schrodinger picture, discussed in detail in references 9-11, and as for the
gauge which must be fixed before writing the Hamiltonian, we chose to work in

the Coulomb gauge. The formal drawback of not being manifestly Lorentz
covariant, which it shares with the formulations of the theory involving a

lattice, is outweighed by the fact that this treatment lends itself immedi-
ately to achieving non-perturbati ve solutions. Still, in contrast to the
lattice theories, our treatment is translational ly and ratotional ly , i.e.,
Galileo, invariant and hence does not suffer from the difficulties associated
with the center-of-mass motion, known in nuclear physics as the appearance of

spurious translational and rotational states. We then write down the
non-perturbati ve vacuum state in terms of the Bogoliubov transformation and
diagonalize the "model" Hamiltonian in that space. We discuss the conditions
for the appearance of a superconducting state of the vacuum, and obtain as a

side-result that the Bose-Ei nstein condensation is a singular limit of the BCS
condensation. We conclude this section by showing explicitly how in principle
to achieve the exact solution.

Even though an exhaustive description of the Mei ssner-Ochsenfeld effect
requires a correct treatment of the vacuum-bag interface, i.e., the breaking
of translational invariance, we show in section 3 that our present simple
model already points toward the existence of that effect. In particular we

show that a color field is damped exponentially when penetrating the physical

vacuum in that its quanta acquire an effective mass in the physical vacuum, of

course without the intervention of a Higgs field. In that section we also
discuss the consequences of our non-manifestly-covariant treatment, and in

particular the question concerning the properties of the boost for our solu-
tions. We further sketch the manner in which the physical vacuum condenses
from the perturbative vacuum, using as an example the decay of a ttO into two
photons. We find indications for the existence of a universal time constant
for this process, or, equivalently, for a universal hadroni zati on time,
similar for all hadrons. The existence of such a condensation time may play

an important role in the development of the early Universe. Finally, we give
a summary of our results.

Some technical points are developed in the appendicies. In Appendix A,

we demonstrate the treatment of the high-energy part by evaluating explicitly
a selection of low-order contributions. Since we work in a non-covariant
framework we demonstrate in Appendix B how to carry out the ultraviolet
renormalization in this framework. Further technical details are contained in

the Doctoral Thesis of D. Iracane [9].
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2. The Gap

In order for the results of the model theory to have any bearing on QCD,
the model should contain as many as possible of the essential ingredients of

QCD. We now discuss our reasoning.

We shall use only the gauge sector of QCD,

L = - —
G 4 yv IJV

F® = 3 A ® - 3 A
®

^A
yv yv vy ^yv^

( 2 . 1 )

( 2 . 2 )

which by itself contains no scale. As is generally done, in the renormaliza-
tion procedure one must chose a renormalization point which then indeed
provides a scale (see Appendix B), which shows up for example in the running
coupling constant. At the present time one customarily fixes the scale by

comparison with experimental data. We here will follow the same procedure.

^^As explained, e.g., in references 10-12, one may denve in the
Schrodinger picture of the fields a field-theoretic Schrbdinger equation from
the field- theoric Lagrangian, which for stationary states reduces to

H|S> = E|S> (2.3)

where |S> is the state vector describing an eigenstate of the system. It is

here that the formal covariance of the treatment is lost: the Hamiltonian is

defined in a given Lorentz frame, say, the lab system. It"is worth while to
recall that in QCD the construction of the Hamiltonian is non-trivial [13,14]
owing to the non-Abel i an nature of the fields. However, since the effects
arising from this difficulty become important only at the two-loop level [14]
or are associated with the Coulomb term, they do not enter our picture at this
poi nt.

We now proceed to isolate the infrared part of the theory. To that end
we break the Hilbert space into two parts and rewrite eq (2.3) as

H[g) = (g)
= E(g) (2-^3)

from which one may eliminate G to obtain

XF + Y Y+F E F = EF (2.4b)

which, of course, is still exact. Nonetheless, Hg^^ is now an effective
Hamiltonian. Our aim is to achieve such a division of the Hilbert space that
the infrared problem be limited to the space F. In that case the nonperturba-

tive treatment can be limited to a small part of the Hilbert space. This then
allows the application of a number of well-known powerful techniques which,

for technical reasons, could not be employed in the full Hilbert space. For

example, the ultraviolet renormalization can be taken care of in the space G,

say, by perturbative methods (see Appendix B), totally independently from the

treatment of the infrared sector, which will be assigned to the space F.
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In other words, the space F can and must be treated by nonperturbati ve
methods; this is not the case for the space G. The precise way in which the
space G is to be treated by perturbative methods is discussed in Appendix A,

before eg (A. 9).

We now return to the discussion of eq (4b). Since we are dealing here
with an effective Hamiltonian, besides the above mentioned absence of manifest
covariance Hpff will not necessarily be manifestly gauge invariant. Again,
this is a well-known feature of the effective interactions, evident, for
example, in the Breit potential for QED. Of course, it does not invalidate
the obtained results. The form of the operators X,Y,Z depends on the division
of the Hilbert space, and in QCD also on the choice of the gauge. We shall

take the space F to consist of that part of the Hilbert space which contains
only low momentum transverse gluons, while G contains the rest of the Hilbert
space, i.e., quarks and high momentum gluons. The precise specification of F

will be given below. Finally, once F and G have been specified one can

introduce projection operators P and Q = 1 - P which project respectively on

the parts F and G on the Hilbert space:

PF=F,PG=0,P2=P (2.5a)

Herewith one can specify the operators of (4):

X = PHP , Z = QHQ

Y = PHQ , Y+ = QHP
(2.5b)

Before discussing the specifics of our model we specify our choice of the

representation of the transversal vector field operators [10-12]. To wit, we

use a plane wave expansion for the (Schrodinger picture) field operators which
are defined so as to obey

t^kia’ ^k'i'a'l "^kk' *^aa' ^*^ii

k k .KiKi,

k2 )
• ( 2 . 6 )

Here k specifies the momentum, i the polarization, and a the color. Herewith

the fTelds are written as

A =

(2Tr) 3/2

Vf -ilk r— t^kia ^i^

ik .r -ik .r

+
^kla

'] . (2.7)

where e.j are the real Cartesian components of the polarization vectors. We

now specify the space F as containing all states which contain arbitrary

numbers of transversal gluons with [kj < M. The states in G then contain at

least one quark (in our case qq pair), or at least one gluon with lk| > M, in

addition to an arbitrary number of soft gluons.
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We now are ready to specify the model. We shall test whether employing a

non-perturbati ve solution suffices for developing an energy gap for the
vacuum. To that end we make the simplest possible choice for the vacuum
state, and we consider the particular coherent pairing state.

M

YpJ d3ke (a+.at)

|V'> = e ( 2 . 8 )0 >

where the dot indicates formation of a singlet in both Minkowski and color
spaces, and k = - k. Note that e|^ depends only on k = |k|. In eq (2.8) we
have omitted the time dependence; it will have to be added to achieve the
complete Schrbdinger picture state vector. Also, the state |V'> is not
normalized. In equation (2.8) the separation between the spaces F and G is

given as the upper limit of the integral over the momenta, denoted by M. To
recall, this separation supposedly reflects the mass scales of the complete
theory; since the space F contains no further scale this separation energy is

the only new scale parameter of the theory as far as the treatment of the
space F is concerned. The complete theory of course is independent of the
value chosen for M.

It may be worth while to point out that our method in essence is the
momentum space analog of Wigner's R-matrix treatment of short-range strongly
interacting systems which splits position space into two parts, i.e., the
internal and the external regions; the non-perturbati ve treatment can be

confined to the internal region. The complete theory in both cases is

independent of the choice of the separation radius — in momentum or in posi-
tion space. Of course, upon solution up to a given accuracy this independence
is lost; this is true both for our treatment and for the R-matrix treatment.
However, in both cases the approximations are made in a well-defined manner;
the "model" is thus not ad hoc , but is in fact a well-defined approximation to
the exact solution, and, in principle the "model" calculation can be rendered
as accurate as one desires (by computing higher order Feynman type graphs for

our case, and by retaining more terms in the series defining the R-matrix in

Wigner's case).

The state (2.8) contains an unspecified number of pairs. It cannot be

achieved in a perturbative treatment as it is connected with the perturbative
vacuum |0> only by an infinite number of applications of the Hamiltonian. The
parameter e|^ is a variational parameter which will be used to find a (local)

minimum of the Hamiltonian. For technical reasons it is advantageous to

replace eq (2.8) by

y/d3ke|,

(2.9)

( 2 . 10 )

|V> = e
|

0>

This state, the operator (2.10) being anti-Hermitian, respects the
normalization of |0>.
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Note that it would be misleading to call the state of the system
described by |V> a "gluon condensate." Namely, even though only the gluons
are treated explicitly in (2.9), (2.10), the actual state contains also an

unspecified number of qq-pairs. However, being in the part G of the Hilbert
space they are hidden in the effective force, which we now discuss. To that
end we rewrite (2.4) as a variational problem

<F|X|F> + <F|Y ^ Y+|F> = E (2.11)

S{<F|X|F> + <F|Y Y+|F>} = 0 . (2.12)

The first term of (2.11) is simply,

M M
Hq = / d3k <|k|> a^ • a,^ = / d3k *

^k ’ (2.13)
rsj 4<w

It is the second term of (2.11), i.e., in the effective force, where the
essential model assumptions have to be made since an exact inversion of the
operator (E-Z) is not possible, even though it concerns the space G and the
inversion could be treated perturbati vely . To begin with, the form (2.9) of F

requires that the number of Fock space operators be even. The simplest
possibility is to allow four operators, as shown in figure la. In principle,
the effect of very complicated high-order graphs can be contained within this

interaction term.

Fig. 1. (a) Graphs represented by (2.15),
(b) Graphs represented by (2.17).
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Of course, the introduction of an effective interaction to describe the
effects of the full Hilbert space on a limited subspace is not new. Recall,
for example, the well-known case of the effective interaction in OED [15,16],
There the effective Eul er-Hei senberg Lagrangian for the vacuum polarization
i s

---®—
- /

d3x (£“ - 2E2B2 + 6“ + 7(E • B)2) (2.14)

15it2 m**

where m is the electron mass. This form was derived as a local approximation
to the non-local higher order corrections, and hence is valid for low momentum
transfers, , in the long wavelength limit. It allows a reasonably
accurate estimate of the QED vacuum polarization effects. Since it is a

Lagrangian it is not yet directly applicable in our case which requires an

interaction Hamiltonian. In any case, in terms of the QED canonical fields,
and TT, the Lagrangian (2.14) shows the presence of terms of the form (j)‘+,

and tt'^, with a preponderance of the term i.e., (B • E)2. We shall write
our effective interaction Hamiltonian in terms of similar local products of

the gluon fields. As far as QED is concerned, we note here that (2.14) does
not lead to a gap since its form factor tends to zero in the long wavelength
1 imit

.

Taking a hint from QED we will write the effective interaction as a

series in powers of the field operators of the space F, i.e., in essence an

expansion in powers of the gluon density. Taking over the results of

Appendix A, eqs (A. 9) and (A. 10) we have for the lowest order term

X + “ ^0 / :(A»A)2: (2.15)

We here have introduced the dimensionless strength parameter Gq, which depends
implicitly on the energy M which separates the spaces F and G. In higher
order it also contains the QCD running coupling constant g, which again con-
tains a scale, a, which arises as a renormalization constant in perturbative
QCD; as shown in Appendix A the coupling constant can be written, as usual.

(2.16)

where k2 is the momentum transfer of the particular matrix element of the

operator Y. The form (2.15) is taken to encompass also the effect of the

4-field term of order g2 contained in eqs (2.1), (2.2).

From the results of Appendix A where a number of lowest order graphs are

computed one may conclude that in QCD the quantity seems to be negative,
which is the sign needed for the possibility of the existence of a condensate.
However, at the same time the resulting Hamiltonian is not positive definite,

i.e., the Hamiltonian H^ + Hj is not bounded from below; the particle density
would tend to infinity. Therefore, with this Hamiltonian one cannot expect
the vacuum state to be stable. This, of course, is also true if one takes for
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Ht an attractive QED-type Coulomb force [17]. (See below the discussion of

the effect of the vertex Since the original Hamiltonian representing a

renormal izable theory presumably is bounded from below the effective
Hamiltonian (2.15) certainly is an insufficient representation of the
effective force Hg^^r of (2.5). To achieve a bounded Hamiltonian one has to
continue the expansion begun in (2.15). To that end we add the sixth-order
term which we write as

H’ = — /d3x ;{A.A)3: (2.17)
M2

where we have extracted explicitly the scale in order to define the

dimensionless interaction strength parameter 3 q. Analogously to the case of

eq. (2.15), the numerical value of Bq depends on the choice of the separation
energy M, and it contains the running QCD coupling constant g. It can be

computed perturbati vely in the space G; from Appendix A we see that to the
same level of assurance of the validity of the results as for a^, the constant

Bq seems to be positive. Herewith we have reproduced the essential
characteristics of the effective interaction: attraction at low density,
stabilized at higher density. In the discussion of the solutions below we
will generalize the form of the operators (2.15,2.17).

In order to solve our model we introduce the Boson analogue of the
Bogoliubov quasi-particle transformation [18,19] which we write as

with

(2.18)

u2 - v2 = 1 (2.19)

for each k = Ijcl. Hence the quasi-particle operators b and b+ also obey the
commutation rotations (2.6). Furthermore we demand

b|V> = 0 ( 2 . 20 )

where |V> is taken to be of the form (2.9). In order to fulfill (2.19)
identically we introduce the Bogoliubov angle Oj^and write

U|^ = coshei^ (2.21a)

V|^ = sinhej^ (2.21b)

We now look for the best solution achievable with the form (2.9) by searching
for the minimum energy. To that end we need the expression for the energy.

We shall use the complete fourth-order interaction which is, as shown in

Appendix A,

a„ I d3x:(A.A)2: + / d3x: (A.A)( n-n) : +-^
55 / d3x:(n-Il)2 (2.15a)

8



In that case, in order to stabilize the system, one also must augment (2.17)
as follows

n = M? / d3x:(A.A)3: + / d3x:(n-n)3 (2.17a)

We re-emphasize that all the strength parameters of the effective Hamiltonian
is principle can be computed perturbati vely in the space G. Using (13) we
find, forming the expectation value of (15a) together with (17a) in the
physical vacuum |V>,

M

= /
d3k —

(X,-1)2

4x, V I + ^ r2 ^^ ^ ^ (2.22)
4M2 SM** 12M8

a = 2(N2 - 1)5 {2.22a)

In this expression (2it)3 K is the volume of the quantization box and 2(N2-i)
= 16 for SU{3). Also, the powers of M have been extracted which according to

Appendix A are needed to make all strength constants dimensionless. Further,

X|^ = e = + vJ2 (2.23)

a-8
°‘°

(2(N2-1) + (2.24a)

4(2u)3

B = 12 ^ [2(N2-1) + -|][2{N2-1) + |] (2.24b)

8(2it)6

Y = 4 2(N2-1) {2.24c)

4(2ti)3

g . 8 -- -- [2(N2-1) + (2.24d)

4{2ir)3

n = 12 ^ [2(N2-1) + |][2(N2-1) + f]
8(2r)6

^ ^

I - ! d3k 1) .

„ k

(2.24e)

(2.25a)

(2.25b)
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Except for the factor 2(N2-1)/(2 tt) ^ the expression in (2.22) thus is directly
the energy density. The quantities (2.24) are simply numerical constants,
while the quantities (2.25) are also numerical constants, which, however,
being functionals, depend on the actual form of the solution.

To obtain the minimum of (2.22) by varying e|^ it is most convenient to
perform the variation independently with respect to U|^ and V|^. To that end we
add the condition (2.19) to the minimization, and search for

U-J I d^k (u 2 - v 2 - D) = 0 (2.26)

where E|. is the Lagrahge parameter. This leads to the following cohditioh

(2.27)

where

T. - 1 G_ i c

2 0)^ 2

A - 1 1 F
^k 2 0),.

"
2 ^‘^k

(2.28a)

(2.28b)

G =

F =

aY + ,^2
Y2 + ^2 ^

J5L- Y + ^ 7 + —- 7 2

M2
' +

M** ^ M8
^

(2.28c)

(2.28d)

The solution of (2.27) is

Ck
“ + G /I + F (2.29)

As seen from the eqs. (2.23) through (2.25), the equations are too

involved to allow an analytical treatment. The actual solution must be found

by numerical methods. We will show the results of such a calculation below in

figure 2.
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With the above quantities we can rewrite (2.23) in the form

(2.23a)X

This form will be convenient in our discussion below.

In order to proceed with the discussion of the spectrum we need the
expression of the Hamiltonian in terms of the quasi-particle operators. The
Wick decomposition of eq. (2.26) yields

(2.30)

Here
g-|

represents also the higher order terms of the perturbation
expansion of Hp^^ beyond Hr and Hjj. Upon insertion of the solution, i.e.,
using the results (2 .28)-(i .29) , eq. (2.30) acquires the form

(2.31)

This shows that for the case where can be neglected, e|^ indeed is

the quasi-particle energy and b'*’ creates quasi-particles. From (2.29) we see

immediately that the existence of a gap requires G > 0. Namely, for

a = 3
= 7=0 we have ej^ = (D|^ /I + 6Z which does not exhibit a gap, only a

dilatation of the spectrum. On the other hand, if G > 0 then indeed /"G is the

gap energy, i.e., the quasi-particle mass; the spectrum again is modified by

the dilatation factor.

We now are in the position to discuss the character of the solutions. In

view of the fact that we have not performed a full calculation of we
shall do this freely, i.e., without prejudicing the sign and magnitude of the
interaction constants of (2.22). That means, we will study the behavior of

the solutions for a selection of cases when only some of the constants at a

time are not zero. This way we will learn all the different forms the
solutions can have; in the general case the characteristics of the solutions
will fall into one or another of these types depending on the values of the
parameters. Thus there actually is no need to study the general case, which,
owing to the complexity of the equations (2.23) through (2.29) at any rate is

too involved to allow an analytic solution; the solution must and can be

obtained numerically.

11



We begin with the case a »3 ^0, all other constants = 0. In that case
F = 0 from (2.28d) and the dilatation factor = 1 . Thus, if 6 > 0 one may
obtain a gap. Note that and A|^ , i.e., the mean field and the pairing

strength, are singular for k 0 , as a result of the relativistic measure
contained in ( 2.7)

.

At the same time the Bogoliubov angle,

0 = y? log (k//k 2 + G) has there a singularity — confirming that the
condensation is an infrared phenomenon. The behavior of the solutions is most
easily seen for the limit of high densities, i.e., for |e|^| >> 1. In that
case the energy density can be written as a power series in the particle
density ~ a‘*'a. We find

6>>1 » G <0
, ^~a)p+ ap^ + 3 p^ > (2.32a)

e<<l , G>0 , ^~wp+a(|^-l) + 0 ( 4^-!) • (2.32b)

In the case (2.32a), for a < 0, g > 0 is required to stabilize the system.
We now discuss the two types of solutions (2.32a) and (2.32b), which both are
accessible given a set of parameters a, g, owing to the form (2.25a) which can
yield either sign for G. We thus investigate 5 as function of G. The extrema
of this curve give the possible states of the system.

The branch G > 0 poses no difficulty. Depending on the magnitude of the
parameters the curve has one minimum. The branch G < 0 requires a more
careful analysis. To wit: ej^, eq (2.29), has a branchpoint at k^ - |G| and is

imaginary for k2 < |G|. Since the Hamiltonian is hermitean this indicates
that the space of the variational functions is inadequate. That this is

indeed the case one sees by investigating the following Ansatz for the

Bogoliubov angle:

= 0 for 0 < k < m

®k 'till ^
where the distribution A^(k) is defined by

d^f
= /

4tt

63(k - m)

(2.33a)

(2.33b)

(2.33c)

and where has support in the interval (m,M]. Here the function and the

constants and m are the variational parameters. The distribution a is

built to be idempotent so that the decomposition (2.33b) holds for all

analytical functions of e|^. Consequently (2.25a) is replaced by

where

M

y = / d3k
m

\ 1

+

m

m
e

(2.34)

(2.35)

12



Herewith the energy density becomes

M

; = / d3k
m

(X, - 1)2

03

k
m

+ -^ 72

8

+ .

12M2
(2.36)

Now we find that the minimum of the branch (2.32a) arrises at the solution.

m = 0 , 01
^

= 0 , G = 0
a'

^in " 2432
(2.37a)

with

X
m

aM2

e
m M 2

.

For a quantization box of size this gives for m 0,

(2.37b)

X
m

g 1

3 8772
M2 L2 (2.37c)

In fact, this singular case of the Bogoliubov transformation turns out to be
precisely the Bose-Ei nstei n condensation with a spectrum e|^ = k and with a

population density
4,^

at k = 0. This way we have the important result:

of (2.32b),
vacuum state

If the minimum at G = 0 of (2.36) is lower than the minimum
no ga^ ensues and we have Bose-Ei nstei n condensation with a

67200^ 0^0 |0>; only if the minimum of (2.32b) is lower; we have a super-
conducting vacuum |V> with a non-vanishing gap.

This is shown in figure 2, for two values of the ratio a/ 3 . The dashed parts
show the energy for the variational functions without the distribution (2.33),
the full lines show the complete result.

We next consider the case 6<0, ti> 0, a=3=Y=0. Here then G = 0,

eq (2.28c), and the spectrum (2 .29) shows no gap, only a dilatation.
Minimization leads to Xp = /1+F and one again has two minima. As n increases
the minimum at F < 0 becomes shallower. Again n > 0 is required to stabilize
the solutions.

Combining the two cases one has the spectrum (2.29). As one "switches
on" the terms Ii

2
, one finds that the effects tend to go i n op posite direc-

tions. Thus, e.g., for e|^ < 0, the factor G increases while /1 +F decreases.
Which of these trends wins out depends on the relative magnitudes of all the
coefficients; the analysis here must be performed numerically on a case by

case basis.

The last case concerns the vertex A2n2, i.e., y 0. For stability it

requires the presence of a repulsive term, i.e., either a > 0, or 3 > 0 if one
has a < 0. We shall take a > 0 and all other coefficients = 0. We also shall

take Y > 0, which is the case for the Coulomb term, even though y could have

either sign. According to (2.28c), (2.28d) here both F and G 0. However,
for a > 0 the case G = 0 is possible if Y < 0 which is the case for < 0.

We find the following solutions.
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0.2

0.1

Jk./>

- 0.1

- 0.2

-I

0.2

0.1

- 0.1

-0.2
-I

Fig. 2 Energy density ^ as functi on of effective gap energy g, defined as

g = + /G for G > 0, g
= - /|G| for G < 0. Full curve: solution of

(36), i.e., the variational space includes the distribution (33);
dashed curve: without the distribution (33). Case A: Bose-Ei nstei

n

condensation; Case B: pairing condensation exhibiting gap.

For G = 0 there exists a Bose-Einstein type condensation with (see
eq (2.35))

X|^ = /I + F , k > 0 (2.37a)

where F is the non-trivial solution of the cubic equation

F =
a

(

/I + F

1
)

(2.37b)

This solution disappears for a > = 3 tty2 /4 . If a - 0, then F - «, and

+ - yjTt2 M**
â

(2.38)
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The other solution which exhibits a gap exists for G > 0; -1 < F < 0. In

that case the of Hq and the of the vertex play against each other; they
have the same dependence on the density. We find for this solution that the
energy of the condensate is finite only if y < = V-tt. in this regime
saturation is provided by the term in Then we find for a = 0

1 im r = - —
^ 36

"

T^Tc

1 im e = — M
^k 3

*

T^c
k-^-o

while at the same time F -1 and G +». It therefore is possible to have a

gap arise from A^n^, however, then y < y^ is necessary. This is not the case
for a form factor 1 /a, i.e., for the QED form of the Coulomb term. In that
case H is not bounded from below, which, by the way, shows that the
replacement of the QCD Coulomb term by the QED form is not justifiable for the
i nf rared.

Finally, we return to the question of the relation of our results to the
"exact" solution. There are two ingredients. First we note that owing to the
presence of |V> is not an eigenstate of the Hamiltonian since H,

eq (2.30), connects states which differ in the number of quasi-particle pairs,
i.e..

<Vn|H|Vn±v> ^ 0 , V = 1, 2, 3 ^ (2.40)

where (symbolically, integration over k implied)

|Vn> = (b+b+)" |V> (2.41)

By di agonalyzi ng H in the space of the functions |Vp> one can obtain an

improved form for the physical vacuum. In view of the forms (2.9), (2.10) for

|V> it might be advantageous in the di agonalization of H to use instead of

(2.33) the form

|V'n> = |q> (2.42)

which may approximation to an n-quasi-pair state than (2.41). In

eq (2.42) if. ^(x) is the (normalized) Laguerre polynomial. This improved

vacuum would have a lower energy than our simple Bogoliubov vacuum |V>,

eq. (2.9), i.e., it would lead to a larger gap. However, this only would
represent an improvement in the numerical accuracy of the results and has no

bearing on the qualitative features. At any rate, we recognize at this point
that in fact the space defined by (2.33) or (2.34) with 0 < n < N for N -» « is

complete for the space F, eq. (2.4), thus allowing for the "exact" solution.

The other ingredient, of course, is the construction of the full effective
Hamiltonian, i.e., the continuation of the expansion eqs. (2.15), (2.17), to
higher order terms.
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3. Discussion of the Solutions

Upon solving eqs (2.22), (2.27) with (2.15a), (2.17a) one achieves an

approximation to the solution of eqs (2.11) and (2.12). Being only an

approximation the solution inevitably will have inaccuracies, some of them
numerical, some of them of principle. Nevertheless, as we now discuss, our

solution encompasses all essential features expected from the physical QCD
vacuum. The most prominent of these is the color Mei ssner-Ochsenfel d effect,

needed for confinement. To wit, it must follow from the properties of |V>

that in the bulk a presence of a color field is incompatible with the

existence of |V>. However, the understanding of the confinement problem

demands an understanding of the transition region |V> |0>, i.e., of the

structure of the vacuum- "bag" interface. Since a full description of this

interface requires the presence of quarks which are needed to stabilize the

"bag," we reserve the complete treatment of this problem to a forthcoming
paper. At this juncture we shall give only a qualitative description, without

addressing the question of the structure of the interface.

Consider a "weak" field, Ag, in the region of the perturbative vacuum,

say region W. In that case the higher order terms are unimportant, and the

system in region W is well described by

= 9 /
- A-v2A): . (3.1)

W

In the physical vacuum, say region fi, however, the presence of the condensate
does not allow the neglect of the higher terms, and hence

H = j / d3x :(A.A - A.v2A): + a/ d3x :(A.A)2: + g/ d3x :(A.A)3: . (3.2)
“ a S2

Denoting the condensate field by A^ and keeping in (3.2) only the terms
quadratic in Ag, we have, in the mean-field approximation,

H = Hy + = I / d3x :{Ag-Ag - A^.v^aA^): + m / d3x :(Ag.Ag): (3.3)

where

m = <V| :a(A^.A^) + B(A^.A^)2: |V> . (3.4)

Herewith we have for the equations of motion for Ag|0>

Ag = V^Ag - mAg X in fi (3.5)

Ae = V^Ag X in W . (3.6)

Recalling (2.28c) we see from (3.4), (3.5) that in the physical vacuum /G

plays the role of a gluon mass. Note that this mass arises dynamically

directly within the framework of QCD. In particular, no Higgs field had to be

introduced, and no equivalent to a Higgs field has emerged in the form of any

new quanta. To continue, as long as m > 0, in the limit of small energy of

Ag, for v2 < m we have from eq (3.5)

q2 = v2 - m < 0 (3.7

)
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i.e., an exponential damping of in f2 , i.e., in the physical vacuum [20]
while according to eq (3.6) the field can freely propagate in the perturbative
vacuum with k2 = v^. Note that we here consider the case m > 0 in agreement
with the discussion in the previous section. Also recall that the magnitude
of m is related to the gap size, i.e., the value of H, eq (2.22) at the
minimum. That indicates that a high-energy gluon, i.e., for > m, which
could penetrate the physical vacuum, will melt that vacuum, by emitting
quasi-parti cl es and in the process lose energy until < m, and thus in the
end will be turned around. In other words, both low and high energy gluons
are totally reflected at the |0> - |V> interface.

Next, consider the energy-momentum character of |V>. Namely, since our
treatment is not manifestly covariant a boost of the solution must be carried
out in detail. However, since our treatment does not break translational
invariance, we at least, in contrast to the bag model, have no difficulties
associated with the center-of-mass problem. We begin by discussing the energy
of the solution |V(t)>, which here we write in full, i.e., (2.9) augmented by

its time dependence. The expectation value (2.22),

<V(t)| H |V(t)> = Ey < 0 (3.8)

cannot actually be the physical eigenvalue of the vacuum; in the utilized
quantized form all energies must be non-negative. The result (3.8) simply
implies the need for a kind of gauge transformation. It is equivalent to the
case of classical electrodynamics where one can shift the energy scale
arbitrarily up or down by the addition of a constant scalar potential, i.e.,

by a global gauge transformation. The same can be done here by a re-

definition of the phase of the state vector |V>:

\\> = |V(t)> ; (3.9)

with this phase the new state vector obeys

It |Vo> = 0 • (3-10)

Remembering that we work in the Schrodinger picture this then yields for the

vacuum energy

Eq = 0 . (3.11)

This way the vacuum |Vq> does not contribute to the cosmological term of

gravity. On the other^hand, now the perturbative vacuum acquires the energy

|E^j, which is the energy needed to replace |Vq> by |0>. Since in our model

system the state |Vq> occupies a volume in position space, the number \E^\

actually represents an energy density

(3.12)
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With this normalization the state |Vq> has the momentum four-vector

P = (E.f) = (0,0) (3.13)

which indeed remains the same in all frames. However, a formal boost of |V>

would be wrong since the separation F - G of the Hilbert space in eqs (2.4),

(2.5) is not boost-invariant. Therefore, in order to describe the vacuum in a

boosted system one must perform the complete calculation in that boosted
system. Then, of course, the form of |V> in that system is exactly the same
as in the original system. Of course, this formal boost non-invariance does
not invalidate the accuracy of the solutions for a given frame of reference,
say, the lab system.

The final point concerns the dynamics of the condensation. Such a

process must take place for example in the annihilation of a qq pair, e.g., a

71 °, into photons. In this process the emitted photons carry away both the
energy of the qq-system in the perturbative vacuum, and the latent heat of the
perturbative vacuum of the "bag" volume. This process involves a non-
perturbative change in the structure of the system: The vacuum state |V> is

connected with the perturbative vacuum |0> in a non-perturbati ve manner.
Hence the process cannot happen instantaneously. Because of the non-

perturbati ve nature of this process the usual procedure of the graph expansion
of the time-dependent perturbation theory is not feasible. A direct treatment
is therefore called for. A full treatment again requires the inclusion of the
quark degrees of freedom. Therefore we here only sketch the procedure,
concentrating on the time development of the vacuum, |V(t)>, from |0> at t = 0

to |V> at large t.

Quite generally, the vacuum state vector is given by the" expansion into
quasi-pair states (2.41)

|V(t)> =
^

Cr,(t) |V'n(t)> (3.14)

where the parameter e contained in (2.9), (2.10), may be taken to be either
time- dependent, or time-independent owing to the completeness of the set (41)

with fixed e.- The time-dependence of |\rp(t)> is given by its expectation
value as in (3.8), renormalized with (3.9). At any rate, the time-dependence
of |V(t)> is governed by

|V(t)> = -i H |V(t)> . (3.15)

This Schrodinger equation can be solved by a time-dependent Bogoliubov
transformation, i.e., by the transformation (2.18) where the coefficients u,

V, are taken to be c-number functions of t. However, without actually solving

(3.57) the character of the solution can be inferred from the sudden

approximation where it is assumed that the annihilation photons are emitted at

t = 0 without a change in the structure of the "bag." In that approximation

we have in terms of the asymptotic states (where e is given by (2.21)),

|V(0)> = |0> » I Cn |V'n(0)> , (3.58)
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with time-independent coefficients C^. Since the individual components of

|V(t)>, eq (3.14) have a time-dependence given by their respective energies
the higher terms will interfere away in a time given by the quasi -parti cl

e

pair excitation spectrum. An exponential decay into the physical vacuum,
i.e., the damping of the quasi -peri odi c beats between the components of

(3.16), arises here in view of the continuum character of the final state (of

the emitted y-rays in our example) in the familiar manner upon integration
over the energy.

Note that this time development is associated only with the quasi-
particle spectrum, i.e., with the characteristics of the vacuum state. Hence
the condensation time constant should be essentially the same for all

processes. In other words, the condensation time is a characteristic of the

vacuum; it may play an important role in the development of the early Universe
in that it may lead to a perhaps substantial undercooling of the system.

In summary, we have demonstrated that in our model, which we believe
reflects with sufficient accuracy the infrared aspects of QCD, a non-perturba-
tive vacuum exists which is a quark-gluon condensate, and which exhibits an

energy gap and repells color fields. Thus this vacuum has all the character-
istics required for color confinement.
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APPENDIX A

We here give a justification for the form of the effective interaction
eqs. (2.15), (2.17). We will limit the discussion to the lowest order graphs.
The following terms with four external fields are possible:

I =
: (A.A)(A.A) : (A.l)

II =
: (A.A)(n.n) : (A. 2 )

III =
: (n-n)(n*n) : C

3
(A. 3)

Equations (A.l), (A. 2), (A. 3) are written in an obvious symbolic fashion. In

terms of the gluon operators, the operators A and n are

A
.

= + a
.

(A. 4)
ki B ki 6 Ri 8

n = a+ - a
ki 8 ki 8 Ri 8

Here the indices denote the momentum, the polarization and the color
respectively. The three operators I, II, III do not have the same weight
since the non-linear terms of the QCD Lagrangian are not symmetric in A and n.

Only the following elementary four-field vertices exist:

V
4

An

A^"^ A

(A. 6 a)

V
c

(A. 7a)

Hence the operator Y, eq (4), which connects our spaces F and G can be written
using as in (56) as

Y = P (V^ + V^) Q . (A. 8 )

Thus in second order, the operator I can be achieved by iterating either
(A. 6 a) or (A. 7a): the operator II by either iterating (A. 7a) or by a product
of (A. 6 a) and (A. 6b); and the operator III by iterating (A. 7a). Evidently the
operator I has the greatest statistical weight. (Recall here, that the
effective interaction is achieved by summing over the intermediate states of

space G, eqs. ( 4 a), (4b): the elementary vertices make up only a small part of

the interaction.)
We now sketch the evaluation in second order of the operator I. This

involves the contraction of the internal lines of the loop (see eq. (4b) for
the effective Hamiltonian), i.e., the integration in the space G. We have,

explicitly

^ g2 /
d3x A“A?a7a?

' /dpdqdkdt A“. A^ A*j 63(p+q+k+£)//u)pa)qU)|^u)^ (A. 6b)

A - 1



^ g2 /
d3xd3y A“ n®. \

(x-y) Aj.n^. fayS
yj yj

= - /dpdqdkdA A“. n®j A^j n^. 63(p+q+k+A) . (A.7b)

Note that V^- involves the Coulomb propagator. In the loop che integration
will be over high momenta; hence the replacement of the covariant derivative
by the simple derivative, i.e., the QCD Coulomb propagator by the QED propaga-
tor in (A. 7b). Next consider the propagator (E - Z)”i of (4b). Since E is

the desired eigenvalue, and we are interested in the lowest eigenstate, E is

either zero, if no condensation takes place, or negative and equal the conden-
sate energy, in case of condensation. Still, E drops out also in that case.

Namely, since the space 6 contains also low momentum gluons, Z is very complex
Indeed, Z can be written as

k ^residual*
(E-Z)“i can be expanded in powers of

^residual’ since for space G, a)|^ > M. In principle, could be

evaluatea in an iterative manner; to the approximation of a small
the propagator becomes simply the reciprocal of the sum of the one-particle
energies a)|^.

and 1 ooks 1 i ke .

Z = E + Jd^k a)|^ a^ •

for

We now have for the interaction Hamiltonian, omitting for the time being
the color couplings.

9“ /

63(p+q+p'+q' ) 63(k+£+k'+£'

)

-1

/a3^a3^a3„ I I /wi^o) „a)i, i i

p q p q

I
- - - -

,

(0 I Q) I I I

p q -1 ' : “k'^A'
1 n_ I u '

p'+p|2 P q Ho k A
|k'+k|2

] W (A.9)

The form factor in this expression is

U 1

• g-* / d3p'
[

I 0)^ I

M ‘^p'‘^p'+p+q

^ .p.:._p_.+p_tq-|

I

p ' +p
I

2 J W I + 0) Ip' “'p'+p+q
(A. 10a)

which for small external momenta becomes

g**
/ dpdqdkdA ! d3r/<o3 .

0)^ (jo„

p q k
M

(A. 10b)
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Here U is an upper limit associated with the ultraviolet renormalization,
which we will discuss below; and M is the mass introduced in (8) which
specifies the boundary between the spaces F and G. Note that and yield
the same dependence of the effective interaction on M. Adding the
contribution of the elementary vertex (A. 6) we have, in position space.

~ (g2 - 9“* log / d3x (A^ • A^)2

For the force (A. 2) we have

(A. 11)

9 ^ I

63(p+q+p'+q'
) 63(k+ji+k' + ji')

/o) OJ 03 I 03 I

p q p q
/o3 |, I 03 „ I

Vq %'V
/03|,03

i+i' |2

(A. 12)

with the form factor

9*+
I d3p

1 1 1

p p +p+q ' p p +q+z

(A. 13a)

which has the small momentum limit

~ 9^+
/
d3pd3qd3kd3£ 63(p+q+k+ji) — (A -n. ) (A -n J / d3r/o3^ . (A. 13b)

/a3
^ ^ ^ M

p q

This interaction requires no ultraviolet renormalization. Thus we find

Heff(A2n2) ~ 9VM2 j d3x (A^ . (A. 14)

to which, of course, must be added the Coulomb term (A. 7b).

The operator (A. 3) arises from

9“ /

63(p+q+p'+q'
) /a3 03,

|P+P'

E_9

*'“p'“q
Vq "p'V V,

/o3|^03^ 6^ ( k+Jt+k
' +£*

)

/ 03 i, I 03 „ I

|k+k' |2

(A. 15)

As before we note the form factor

1 1
-9^+

J d3p'
1

“p'“p'+p+q Ip'-'pI^ |p'+kP ojp.+ojp.^p^q
(A. 16a)

its low momentum limit

~ -
9 "+

/
d3pd3qd3kd3£ »/a3p03q03|^03^ 63(p+q+k+£) / d3r/a)7 , (A. 16b)
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and the resulting position space form

Heffln^^) ~ -g‘+/M2
/ d3x (n^ • . (A. 17)

Again no renormalization is required.

We now proceed to the higher terms which are supposed to stabilize the
Hamiltonian. They result from continuing the graph expansion of the effective
interaction (4b). The lowest order graphs arise by replacement of the two-
point loop by a three-point loop, i.e., a triangle. Thus for the term in
(A. 6) we have

63(p+q+p'+q' )

f

xAAA A ^ i \{.K+AtK ‘.tCl
ft

A A A jlI 5lCr+s+r'+s') , ,
' '

, >

0

As previously, the form factor

0 /(jO 00 0) I 03 I

r s r s

U
1g6 f c|3p

p* -p'+p+q-p'-r-s ‘^p''’^^p'+p+q ‘^p* '’’‘^p
' -r-s

for small external momenta is

/oo 03 OOi 0) 00 00

p q k £ r s

No renormalization is required and we find

Heff{A«) ~ g6/M2 / cl3x (A^ . A^)3

(A. 19a)

63(p+q+k+£,+r+s) U
gS

I d3pd3qd3kd3{,d3rd3s — A A A. A A A / d3p'/u3, . (A. 19b)pqKJirs/Tj p

(A. 20)

Indeed, they have the opposite sign of the fourth-power interaction owing to
the presence of two (negative) energy denominators. Finally, using the
Coulomb vertex (A. 7a) we have

g6 j

6^ (
p+q+p ' +q

' ) 6^ ( k+£+k ' + £,
' )

6^( r+s+r '+s ‘

)

P Q ^ jc » s

p+p '
I 2 k+k' |2 |r+r'|2 /oOpiOOq |03|^

lOO^iOO^iOOg I

'
' -1 '

' • '

X n n A ,A
,

— n.n A, ,A
,

— n n A ,A^,
p q p' q' Hq k £ k' £ Hq r s r' s'

(A.21)
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1 1 1
u

~ / d3p' —
M ^p' ^p'+p+q^p' -r-s ‘^p''*’“p'+p+q ^p

'

'*’‘^p
' -r-s

1 1 1

^ |p+p'|2 |p+q+k+p'|2 |s-p'|2

~ / d3pd3qd3kd3£d3rd3s 63(p+q+k+£+r+s)

U

X
/

d3t/a)il (A. 22b)
M

^

and the position space form

Heff(n^) ~ g6/M8
j
d3x . (A. 23)

We now consider the renormalization which is required for the term ~ A^,
(A. 11) (see also Appendix B). Since QCD is a renormal i zabl e theory the
renormalization can be performed by using counterterms in the Lagrangian.
Developing the coupling constant up to second order in the Goldstone series
yiel ds

9 = god + V- c
Qo^

log U/y) (A. 24)

where y defines the renormalization point. (Of course, the form (A. 24)
corresponds to that found from the renormalization group equations.) At the
same time, summation of all graphs up to second order which describe soft
gluon scattering has the form factor

g2 - g4 c log U/t (A. 25)

when t is the momentum transfer. Using (A. 24) the ultra-violet momentum U

drops out and (A. 25) becomes instead

^0^ - Qq'' ^ ^09 M/t . (A. 26)

We now return to our computation of the effective force. For each graph
of the Goldstone series there exists an equivalent graph for the coupling
constant. The difference between the two graphs resides in the difference
between the energy denominators: The propagators for the effective force
contain the perturbed energies, as the Goldstone series is a Bri 1 1 oi n-Wi gner
expansion. The difference between the two series thus vanishes in the

ultraviolet limit, and hence we find for the effecive interaction

Heff{A‘') ~ (g' - g" c log ^ = g„2(l - cg„2 log ^ )
(A.27)

Finally, comparing with the form (16) we find

u = A » A (A.28)

for our case.
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APPENDIX B

The familiar renormalization procedure, say in QED, is carried out in the
framework of the covariant perturbation expansion. Here we instead have to
employ the perhaps less familiar non-covariant Goldstone expansion. Of

course, the differences between the two treatments are only formal. In either
case, renormalization is achieved by introducing in the interaction Lagrangian
suitable counter-terms. The counter-terms are employed to cancel the ultra-
violet divergence, i.e., they belong to the perturbative domain. In the

present context we are interested in the renormalization of the coupling
constant. The procedure then consists in calculating the corrections to the

coupling canstant to the same order as the physical effect - precisely as in

the covariant treatment. And, quite importantly, since in our case the

renormalization of concern is associated with the ultraviolet divergence the

procedure is carried out in the space G. Hence no infrared singularities will

be encountered.
Now to the details. Since our calculation of the matrix elements.

Appendix A, is carried to second order we need the evaluation of the coupling
constant to first order. Beginning with the QCD Hamiltonian

HqcD = ^0 ^ V » V = V3 + (B.l)

V
3

= g A3 (B.2a)

= g2 A'+ + g2 An An , (B.2b)

we have for the two-gluon state

^
^p'i 'a' ^q'j ' 6' (^*3)

the "unperturbed" energy tiq given by

r\Q = Hq
| 4>> . (B.4)

The "perturbed" energy then is given in the Goldstone expansion as

T1 = I <4-1 V(—^ V]" U> {B.5)

c ^0
” ^0

where the sum is over the connected graphs. To achieve a finite n one writes

the coupling constant g of V as a power series in g^. The coefficients of

that series in a renormal izable theory then can be so determined by the

definition of a small number of elementary divergences that all infinities

cancel in each order of gg in the expansion (B.5) when inserting g as a

function of g^.

We now consider the scattering of two soft gluons, i.e., tiq « 0. For the

treatment up to fourth order we thus must calculate

' —^ V + V V
4 -H„ 4 _H,

-L- V + V
—^ V

3 -H, ^^3 -H, 4 -H

+ V
3 -H

V V + V —^ V^3 -H. ^^4 ''3 -H, 3 -H *3 -H
(B. 6 )
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We here sketch the evaluation of the first term of (B.6). This term comprises
the three Goldstone graphs

(B.7a)

(B.7b)

(B.7c)

The loop contains two hard gluons, (B.3) with |p'|, |q'| > M. Therefore the

loop propagator is |i|)>
— —

<i(i|. Applying on
1

1|)> yields
0) I

“ to I

p q

l*> T!^ '
«>(p.q-p'-q')

(471)3 v'copojqiop.coq,

+ faaa'faBB'^ t (p.)5t
( .

jt.
, (p ) ^

ij I'n^^ nj'^^ ' ji J 1 |P"P I

X
6;,i(p')65,j(q'))]

(B.8a)

al_
J
,3pd3qdil£±ai^ A

[f^a'B>aaB^t^,(p,^

(4tt) /to to (0 I

p q p

+ fa““‘fa66'(5.^5t,.,(p.) .
6^.(p’)6i,j(p')

-
6.i.(p')6jj,(p'))]

(B.Bb)

In the form (B.8b) we have neglected the external momenta p and q with
respect to p' and q'. The first graph (B.7a) thus gives

w -1_
V,. = .^ ; d3pd3qd3kd3,

d3(p^)
Ap

.

“ ‘^0 “ {47,)3 /(0,^l0^t0i,t0-
p q k £



= -^ f d3pd3ad3kd3£ A , A . A, A . f
^

4„)3 ./o) 0)
qj6 kn^ unis J

3

^ + 2f^“^f^‘Yd^b6d^bYC
*- n j m

^ 3 '^ij^nm
'*’

5 ‘^in’^jm
'*’

5
(B.9b)

In (B.9b) the angular integrations have been carried out. Similar
expressions arise for the graphs (B.7b) and (B.7c). Since the external

momenta are small, all three graphs have propagators l/ 2 a3n'> i-e., the energy
of the hard loop gluons. The radial integration then yields the factor
log(U/t) where t is the (small) momentum transfer of the graph. We note the
appearance of two distinct color tensors:

^y 6 ^
^aa6 ^3^6 (B.lOa)

Otp

^y6 ^
^^(xc ^aad ^bYC ^b6d

(B.lOb)
a6

Thus, for example, = 0, while = 2MT“ = 0. It is

the part containing the tensor which is employed in the renormalization

discussed in Appendix A. The tensor must be cancelled when calculating

all terms of (B.6).
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